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A NOTE ON SELF SIMILAR VECTOR FIELDS IN CYLINDRICALLY
SYMMETRIC STATIC SPACE-TIMES

G. SHABBIR1, S. KHAN1

Abstract. A different approach, which consists of algebraic and direct integration techniques,

is developed to study self similar vector fields in cylindrically symmetric static space-times.

Here we discuss self similar vector fields of first, second, zeroth and infinite kinds for the above

space-times. We have shown that for the special class of the above space-times admit proper

homothetic vector fields.
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1. Introduction

A vector field X is said to be self similar if it satisfies the following two conditions [6]

L
X

ua = α ua, (1)

L
X

hab = 2 δ hab. (2)

where L represents Lie derivative with respect to the vector field X, ua is the four-velocity of the
fluid satisfying uaua =∈ and hab = gab+ ∈ uaub is the projection tensor, ∈= ±1 and α, δ ∈ R. If
∈= 1 the vector field ua is said to be space-like otherwise it is time like. If δ 6= 0, the similarity
transformation is characterized by the scale-independent ratio α/δ, which is called the similarity
index. If the ratio is unity, X turns out to be a homothetic vector field. In the context of self
similarity, homothety is referred to as self similarity of the first kind. If α = 0 and δ 6= 0, it
is referred to as self similarity of the zeroth kind. If the ratio is not equal to zero or one, it
is referred to as self similarity of the second kind. If α 6= 0 and δ = 0, it is referred to as self
similarity of the infinite kind. If δ = α = 0, X turns out to be a Killing vector fields. If a
self similar vector field X is in the direction of the four velocity of the fluid then it is said to
be non-tilted parallel self similar vector field. If a self similar vector field X is along the hyper
surface, then it will be perpendicular to the fluid flow and is called non-tilted orthogonal self
similar vector field. If a self similar vector field X is neither orthogonal nor parallel to the fluid
flow it is said to be tilted.

Over the past few years much work has been done in studying self similar solutions in some
well known space-times [1-4, 7, 9]. Self similar solutions of the Einstein field equations are
widely studied for two very important reasons; first, the governing differential equations have
some mathematical complexity which is often reduced by the assumption of self similarity and
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the system of partial differential equations is reduced to ordinary differential equations. Sec-
ond, self similarity solutions are extensively used for cosmological perturbations, star formation,
gravitational collapse, primordial black holes, cosmological voids and cosmic censorship [8].

Throughout in this paper M represents a four dimensional, connected, Hausdorff space-time
manifold with Lorentz metric g of signature (-, +, +, +). The curvature tensor associated
with gab, through the Levi-Civita connection, is denoted in component form by Ra

bcd. The usual
covariant and partial derivatives are denoted by a semicolon and a comma respectively. Here, M

is assumed non flat in the sense that the curvature tensor does not vanish over any non empty
open subset of M.

2. Main Results

Consider the cylindrically symmetric static space-times in usual coordinate system (t, r, θ, z)
(labeled by (x0, x1, x2, x3), respectively) with the line element

ds2 = −eA(r)dt2 + dr2 + eB(r)dθ2 + eC(r)dz2, (3)

where A, B and C are arbitrary functions of r only. It is to be remember that here we shall take
the four-velocity vector as time like vector field and define by ua = e

A
2 δ0

a, where uaua = −1,

thus the line element (3) becomes

ds2 = −du2 + dr2 + eB(r)dθ2 + eC(r)dz2. (4)

The Ricci tensor Segre type of the above space-times (4) is {1,111} or one of its degeneracies. The
above space-times (4) become 1+3 decomposable and admit nowhere zero time-like covariantly
constant vector field ua such that ua;b = 0 and uau

a = −1. Expanding equation (1) and use the
fact ua is covariantly constant we get

Xb,a ub = α ua ⇒ X0, a = α ua. (5)

Equation (5) implies that X0 = X0(u) and X0 = α u+λ, where λ ∈ R. The non zero components
of the projection tensor hab are

h11 = 1, h22 = eB(r) and h33 = eC(r). (6)

Expanding equation (2) explicitly and using (6) we get

X1,1 = δ, (7)

eB(r)X2,1 +X1,2 = 0, (8)

eC(r)X3,1 +X1,3 = 0, (9)

B•(r)X1 + 2X2,2 = 2δ, (10)

e(C(r)−B(r)) X3,2 +X2,3 = 0, (11)

C•(r)X1 + 2X3,3 = 2δ, (12)

where ‘dot’ represents differentiation with respect to r. Equations (7), (8) and (9) give



40 TWMS J. PURE APPL. MATH., V.4, N.1, 2013

X1 = δ r + K1(θ, z),
X2 = −K1

θ (θ, z)
∫

e−B(r)dr + K2(θ, z),
X3 = −K1

z (θ, z)
∫

e−C(r)dr + K3(θ, z),
(13)

where K1(θ, z), K2(θ, z) and K3(θ, z) are functions of integration.
Considering equation (11) and using equation (13) we get

eC−B

(
−K1

zθ(θ, z)
∫

e−C(r)dr + K3
θ (θ, z)

)
+

(
−K1

θz(θ, z)
∫

e−B(r)dr + K2
z (θ, z)

)
= 0.

Differentiating the above equation with respect to r and after some simplification we have
(

(C −B)• eC

∫
e−C(r)dr + 2

)
K1

zθ(θ, z)− (C −B)• eCK3
θ (θ, z) = 0.

Now divided above equation with (C −B)• eC and assuming that (C −B)• 6= 0 (The case
when (C −B)• = 0 ⇒ B = C + constant the above space-times (4) become plane symmetric
and their self similar solutions are given in [5]) and differentiating again with respect to r we

get
(∫

e−C(r)dr + 2e−C(r)

(C−B)•

)•
6= 0 and K1

zθ(θ, z) = 0. Substituting back we get K2
z (θ, z) = 0

and K3
θ (θ, z) = 0. Equations K1

zθ(θ, z) = 0, K2
z (θ, z) = 0 and K3

θ (θ, z) = 0 give K1(θ, z) =
F 1(θ)+F 2(z), K2(θ, z) = F 4(θ) and K3(θ, z) = F 3(z), respectively, where F 1(θ), F 2(z), F 4(θ)
and F 3(z) are functions of integration. Equation (13) becomes

X1 = δ r + F 1(θ) + F 2(z), X2 = −F 1
θ (θ)

∫
e−B(r)dr + F 4(θ),

X3 = −F 2
z (z)

∫
e−C(r)dr + F 3(z).

(14)

Consider equation (10) and differentiating with respect to r and using (14) we get B• F 2
z (z) = 0.

There exists the following three possibilities which are:
(a) B• 6= 0, F 2

z (z) = 0 (b) B• = 0, F 2
z (z) 6= 0 (c) B• = 0, F 2

z (z) = 0.

First consider (a), equation F 2
z (z) = 0 ⇒ F 2(z) = c1, where c1 ∈ R. Now consider equation (12)

and differentiating with respect to θ and using (14) we have C• F 1
θ (θ) = 0. Again there exist

three possibilities which are:
(d) C• 6= 0, F 1

θ (θ) = 0 (e) C• = 0, F 1
θ (θ) 6= 0 (f) C• = 0, F 1

θ (θ) = 0.
In case (ad) we have B• 6= 0, C• 6= 0, F 1

θ (θ) = 0 and F 2(z) = c1. Equation F 1
θ (θ) = 0 ⇒

⇒ F 1(θ) = c2, where c2 ∈ R and c1 + c2 = d1. Consider equation (10) and use the above
information we get B• (δ r + d1)+2F 4

θ (θ) = 2δ. Differentiating with respect to θ we get F 4
θθ(θ) =

= 0 ⇒ F 4(θ) = θ d2 + d4, where d2, d4 ∈ R. Substituting back we get B = ln(δ r + d1)2(1− d2
δ

).

Now consider equation (12) and use the above information we get C• (δ r + d1) + 2F 3
z (z) = 2δ.

Differentiating with respect to z we get F 3
zz(θ) = 0 ⇒ F 3(z) = z d3 + d5, where d3, d5 ∈ R.

Substituting back we get C = ln(δ r+d1)2(1− d3
δ

). In this case the solution of the above equations
from (7) to (12)

X1 = δ r + d1, X2 = θ d2 + d4, X3 = z d3 + d5. (15)

In case (ae) we have B• 6= 0, C• = 0, F 1
θ (θ) 6= 0 and F 2(z) = c1. If one proceeds further like

the previous case one find that B• = 0 which gives contradiction to our assumption. Hence this
case is not possible.

In case (af) we have B• 6= 0, C• = 0, F 1
θ (θ) = 0 and F 2(z) = c1. Equations F 1

θ (θ) = 0 and
C• = 0 ⇒ F 1(θ) = c2 andC = β where c2, β ∈ R and c1 + c2 = d1. Consider equation (12) and
using the above information and upon integration with respect to z we get F 3(z) = δ z + d3,

d3 ∈ R. Now consider equation (10) and use the above information we get B• (δ r + d1) +
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+ 2F 4
θ (θ) = 2δ. Differentiating with respect to θ we get F 4

θθ(θ) = 0 ⇒ F 4(θ) = θ d2 + d4, where

d2, d4 ∈ R. Substituting back we get B = ln(δ r + d1)2(1− d2
δ

). In this case the solution of the
above equations from (7) to (12)

X1 = δ r + d1, X2 = θ d2 + d4, X3 = z δ + d3. (16)

In case (b) we have B• = 0 and F 2
z (z) 6= 0. Equation B• = 0 ⇒ B = η, where η ∈ R. If one

proceeds further one find that F 2
z (z) = 0 which gives contradiction to our assumption. Hence

this case is not possible.
In case (c) we have B• = 0 and F 2

z (z) = 0. Equations B• = 0 and F 2
z (z) = 0 ⇒ B = η

and F 2(z) = c1, where c1, η ∈ R. Consider equation (10) and use the above information we
have −2 r e−η F 1

θθ(θ) + 2F 4
θ (θ) = 2δ. Differentiating with respect to r one has F 1

θθ(θ) = 0 and
F 4

θ (θ) = δ ⇒ F 1(θ) = θ c3 + c2 and F 4(θ) = δ θ + d4, where c2, c3, d4 ∈ R. Now consider
equation (12) and use the above information we get B• (δ r + θ c3 + d1) + 2F 3

z (z) = 2δ, where
c1 + c2 = d1. Differentiating with respect to θ we get c3 = 0. Again differentiating with respect
to z one finds that F 3

zz(z) = 0 ⇒ F 3(z) = z d3 + d5, where d3, d5 ∈ R. Substituting back we get
C = ln(δ r + d1)2(1− d3

δ
). In this case the solution of the above equations from (7) to (12)

X1 = δ r + d1, X2 = δ θ + d4, X3 = z d3 + d5. (17)

It is important to note that from the above calculations it follows that there exists three possi-
bilities when the above equations (7) to (12) admit solution these are

(ad) B = B(r) and C = C(r). (c) B = constant and C = C(r).
(af) B = B(r) and C = constant.

In order to further classification we will discuss each possibility in turn.
Case (ad): Here, we have B = B(r) and C = C(r). In this case the above space-times (4)

become
ds2 = −du2 + dr2 + (δ r + d1)2(1− d2

δ
)dθ2 + (δ r + d1)2(1− d3

δ
)dz2. (18)

The solution of the above equation from (7) to (12) is given in equation (15). It is important to
remind the reader that X0 = α u + λ. Now for this case we will discuss tilted and non tilted self
similar vector fields:

Tilted Cases
There exist following three possibilities which we discuss in turn.
(a) Here we choose α 6= 0, δ 6= 0 and α = δ. The line element takes the form

ds2 = −du2 + dr2 + (α r + d1)2(1− d2
α

) dθ2 + (α r + d1)2(1− d3
α

)dz2. (19)

Self similar vector fields take the form

X0 = α u + λ, X1 = δ r + d1, X2 = θ d2 + d4, X3 = z d3 + d5. (20)

The vector field in (20) is tilted to the time-like vector field ua and gives the self similarity of
first kind.
(b) In this case we choose α 6= 0, δ 6= 0 and α 6= δ. The line element in this case takes the form

ds2 = −du2 + dr2 + (δ r + d1)2(1− d2
δ

) dθ2 + (δ r + d1)2(1− d3
δ

)dz2. (21)

Self similar vector fields take the form

X0 = α u + λ, X1 = δ r + d1, X2 = θ d2 + d4, X3 = z d3 + d5. (22)

The vector field in this case is tilted to the time-like vector ua and represents the self similarity
of second kind.
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(c) Now we choose α 6= 0 and δ = 0. Here, the line element becomes

ds2 = −du2 + dr2 + e(a1 r+c1)dθ2 + e(a2 r+c2)dz2, (23)

where a1, a2, c1, c2 ∈ R. Self similar vector fields become

X0 = α u + λ, X1 = d1, X2 = θ d2 + d4, X3 = z d3 + d5, (24)

where a1 = −2d2
d1

, a2 = −2d3
d1

and d1, d2, d3 ∈ R(d1 6= 0). Here the vector field is tilted to the
time-like vector ua and represents the self similarity of Infinite kind.

Non Tilted Case:
If we choose α = 0, and δ 6= 0. The line element becomes

ds2 = −du2 + dr2 + (δ r + d1)2(1− d2
δ

) dθ2 + (δ r + d1)2(1− d3
δ

)dz2, (25)

where d1, d2, d3 ∈ R. Self similar vector fields take the form

X0 = λ, X1 = δ r + d1, X2 = θ d2 + d4, X3 = z d3 + d5. (26)

where d4, d5 ∈ R. In this case the vector field is non-tilted perpendicular to the time-like vector
ua and represents the self similarity of zeroth kind.

Case (c): In this case we have B = constant and C = C(r). If one proceeds further one
finds that the above space-times (4) become

ds2 = −du2 + dr2 + dθ2 + (δ r + d1)2(1− d3
δ

)dz2. (27)

The solution of the above equation from (7) to (12) is given in equation (17). It is important
to remind the reader that X0 = α u + λ. Now we will discuss tilted and non tilted self similar
vector fields in this case:

Tilted Case:
In this case if we choose α 6= 0, δ 6= 0, α = δ and the line element becomes

ds2 = −du2 + dr2 + dθ2 + (α r + d1)2(1− d3
α

)dz2. (28)

Self similar vector fields become

X0 = α u + λ, X1 = α r + d1, X2 = α θ + d4, X3 = z d3 + d5. (29)

The vector field in this case is tilted to the time-like vector ua and represents the self similarity
of First kind. If we choose α 6= 0, δ 6= 0 and α 6= δ. The line element becomes

ds2 = −du2 + dr2 + dθ2 + (δ r + d1)2(1− d3
δ

)dz2. (30)

The Self similarity of second kind becomes

X0 = α u + λ, X1 = δ r + d1, X2 = δ θ + d4, X3 = z d3 + d5. (31)

The vector field in this case is tilted to the time-like vector ua and represents the self similarity
of second kind. Now if we choose α 6= 0 and δ = 0, we get

X0 = α u + λ, X1 = d1, X2 = d4, X3 = z d3 + d5 (32)

with line element
ds2 = −du2 + dr2 + dθ2 + e(a3 r+c3)dz2, (33)

where a3 = −2d4
d1

, d1 6= 0 and a3, c3 ∈ R. The vector field in this case is tilted to the time-like
vector ua and represents the self similarity of Infinite kind.
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Non Tilted Case:
In this case if we choose α = 0 and δ 6= 0 we get

X0 = λ, X1 = δ r + d1, X2 = δ θ + d4, X3 = z d3 + d5 (34)

with line element
ds2 = −du2 + dr2 + dθ2 + (δ r + d1)2(1− d3

δ
)dz2. (35)

In this case the vector field is non-tilted perpendicular to the time-like vector ua and represents
the self similarity of zeroth kind. The case (af) is exactly the same.
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